983

Kinetics of Ion-pair Exchange in Acetic Acid

By M. R. CRAMPTON[†] and ERNEST GRUNWALD^{*}

(Department of Chemistry, Brandeis University, Waltham, Massachusetts 02154)

Summary The rate constants for the ion-pair metatheses p-toluidinium toluene-p-sulphonate + metal acetate \rightleftharpoons p-toluidinium acetate + metal toluene-p-sulphonate have been measured using an n.m.r. technique; the rate constants are *ca*. 10⁹ M⁻¹ s⁻¹ and show that the slow step in the exchange involves cation-acetate cleavage.

THE BINDING of cation to anion in ion-pairs, beyond that described by the model of charged spheres, is largely unknown.¹ We have initiated some kinetic studies of ionpair exchange, using the n.m.r. technique, which give information as to the ion-pair structure. The solvent used is acetic acid, and a limitation on the ion-pairs that can be studied is that one of the cations must contain an

† On leave from Durham University, England.

exchangeable amino-proton. The importance of ion-pairs and their exchange in solvolysis reactions is well documented.²

A suitable substrate in the present work was p-toluidinium toluene-p-sulphonate (BH+OTs⁻) which exists largely in the form of ion-pairs in acetic acid so that the concentration of free ions is small.³ Slow-passage n.m.r. spectra showed that the rate of exchange between carboxyl protons of the solvent and amino-protons, which is fast in the absence of acid, is slowed down by the addition of toluene-p-sulphonic acid. Rates of NH-CO₂H exchange in solutions containing 10⁻⁴ to 10⁻¹ M-acid were accurately determined using spinecho techniques previously described.^{4,5}

The kinetic analysis follows that previously given⁵ for

NN-dialkylanilinium salts. We find that the data can be rationalised only in terms of a fairly complicated mechanism

by the good agreement between the experimentally determined values of $1/\tau$ and those calculated with the values

10 ² [HOTs]	••	••	0.022	0.0342	0.048	0.069	0.092	0.122	0.151	
$1/\tau$ observed	••	••	14100	9200	6400	4590	3520	2750	2210	
$1/\tau$ calculated	••		13900	9000	6490	4590	3500	2700	2220	
10 ² [HOTs]	••	••	0.21	0.42	0.63	1.2	1.87	$2 \cdot 8$	4.02	6.20
$1/\tau$ observed	••	••	1680	928	634	409	289	209	157	109
$1/\tau$ calculated	••	••	1660	922	667	406	289	210	157	109

involving formation of the p-toluidinium acetate ion-pair by steps 1 or 2 (or 3 in the presence of added M+OTs-)

$$BH^{+}OTs^{-} + HOAc \xrightarrow{k_{+}} BH^{+}OAc^{-} + HOTs \quad (1)$$

$$BH+OTs^{-} + BH+OAc^{-} \rightleftharpoons BH+OAc^{-} + BH+OTS^{-}$$
(2)

BH+OTs⁻ + M+OAc⁻
$$\xrightarrow{k_{+M}}$$
 BH+OAc⁻ + M+OTs⁻ (3)

followed by formation of the solvated amine (reaction 4)

BH+OAc-
$$\frac{k_{-1}}{k_1}$$
 B·HOAc; $k_1/k_{-1} = K_1$ (4)

and exchange of the solvating acetic acid with bulk solvent (reaction 5).

$$B \cdot HOAc + HOAc(solvent) \xrightarrow{R_H} B \cdot HOAc + HOAc(solvent)$$
(5)

This mechanism leads⁵ to a rate of exchange R given by:

$$\frac{R}{[\mathrm{BH^+OTs^-}]} = \frac{3}{\tau} = \frac{k_\mathrm{e}K}{[\mathrm{HOTs}]} \times \frac{k_\mathrm{e}[\mathrm{HOTs}] + k[\mathrm{BH^+OTs^-}] + k_\mathrm{-M}[M^+\mathrm{OTs^-}]}{k_\mathrm{e} + k_\mathrm{e}[\mathrm{HOTs}] + k[\mathrm{BH^+OTs^-}] + k_\mathrm{-M}[M^+\mathrm{OTs^-}]}$$

where τ is the mean residence time of a proton on an NH site in one cycle of exchange and the factor 3 results from the three NH protons; $k_{e}(=k_{H}K_{i})$ is the probability per second that a BH+OAc- ion-pair exchanges its NH proton and $K = k_+/k_-$. Analysis of the data involving plots of $[HOTs]/\tau$ versus [HOTs] at low acid concentration and $[HOTs]/\tau$ versus 1/[HOTs] at high acid concentration allows the determination of the product $k_{e}K$ and the rate constants k, k_{-M} , k_{-} , and k_{e} . The results with BH+OTs⁻ in the absence of added metal toluene-p-sulphonate (M+OTs-) completely confirm this rate law and indicate the importance of step 2 in the formation of the BH+OAc- ion-pair. Results at concentration of BH+OTs- at 0.03 and 0.05 м indicate that k (the rate constant for symmetrical ion-pair exchange) has the value $(8.2 \pm 0.3) \times 10^8 \, \text{M}^{-1} \, \text{s}^{-1}$ at 30° and is independent of solute concentration.

The rate law remains valid in the presence of added M+OTs-. This is demonstrated for the case of solutions containing BH+OTs-, 0.05 M and Cs+OTs-, 0.038 M at 30°

The rate constants with which we are most concerned here are those involving ion-pair exchange. The values of k_{-M} were determined at 30° for a series of metal toluene-psulphonate salts to an accuracy of $\pm 10\%$. The values of $K_{\rm M}$, the equilibrium constants for ion-pair exchange, were measured by determining spectrophotometrically the equilibrium concentrations of free p-toluidine (B) in mixtures made up from stock solutions of BH+OTs-, B, M+OAc⁻ and M+OTs⁻. The equilibrium constant K_1 $(=[BH^+OAc^-]/[B])$ is known⁶ to have the value 19 at 30° so that the concentrations of BH+OAc- followed by the concentrations of other ion-pairs could be found.

Rate and equilibrium constants for ion-pair exchange at 30°

M+	$(measured) (M^{-1} s^{-1})$	$k_{+M} (= k^{-M} K_M)$ (M ⁻¹ s ⁻¹)	$K_{\mathbf{M}}$ (measured)
Li+ Tl+	$5\cdot1 imes10^8\9\cdot4 imes10^8$	$egin{array}{ccc} 3{\cdot}0 \ imes \ 10^8 \ 7{\cdot}1 \ imes \ 10^8 \end{array}$	0·59 0·76
BH+	$8\cdot 2 imes 10^8$	$8.2 imes 10^8$	1.0
K+ Cs+	$egin{array}{cccc} 5\cdot5 imes 10^8 \ 6\cdot0 imes 10^8 \end{array}$	$egin{array}{cccc} 8{\cdot}6 imes 10^8 \ 14 imes 10^8 \end{array}$	$1.56 \\ 2.26$
$\mathrm{Bu}^{n}_{4}\mathrm{N}^{+}$	$7.5 imes10^8$	21×10^8	2.75

The rates of ion-pair exchange are high but are significantly lower than expected for diffusion control. The results show that the values of k_{+M} , the rate constants for reaction of metal acetate with BH+OTs-, are much more sensitive to the nature of M^+ than are the values of k_{-M} . This is good evidence that the slow step in the exchange reaction involves cleavage of a "bond" between the cation $(M^+ \text{ or } BH^+)$ and acetate ion. It implies also a stronger interaction in the acetate ion-pairs than in the toluene-psulphonate ion-pairs, a result which is in accord with the greater basicity of the acetate ion than that of the toluenep-sulphonate ion. The general trend to a faster rate constant, k_{+M} , with larger size of the cation is to be expected, because the small lithium ion will co-ordinate more strongly than the larger ions. This effect is seen also in the trend in values for the equilibrium constants K_{M} . We conclude that these ion-pairs have definite structure and the the ion-pair exchange reactions are more like chemical reactions than like the exchange of independent ionic partners.

This work was supported by a grant from the National Science Foundation of the U.S.A.

(Received, June 9th, 1970; Com. 890.)

- E. Grunwald and E. Price, J. Amer. Chem. Soc., 1964, 86, 2965, 2970.
 E. Grunwald and M. Puar, J. Amer. Chem. Soc., 1967, 89, 6842.
- ⁶G. W. Ceska and E. Grunwald, J. Amer. Chem. Soc., 1967, 89, 1371.

 $k_{\rm e}K = 23.7, \ k_{-} = 8.5 \times 10^9 \ {\rm m}^{-1} \, {\rm s}^{-1}, \ k = 8.2 \times 10^8 \ {\rm m}^{-1} \, {\rm s}^{-1},$ $k_{-M} = 5.7 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$, and $k_e = 1.02 \times 10^8 \text{ s}^{-1}$.

¹ M. Szwarc, Accounts Chem. Res., 1969, 2, 87.

 ² S. Winstein, B. Appel, R. Baker, and A. Diaz, *Chem. Soc. Special Publ.*, No. 19, 1965, 109.
 ³ C. S. Leung and E. Grunwald, *J. Phys. Chem.*, 1969, 73, 1822.